Can AI Scaling Continue Through 2030?
In recent years, the capabilities of AI models have significantly improved. Our research suggests that this growth in computational resources accounts for a significant portion of AI performance improvements.1 The consistent and predictable improvements from scaling have led AI labs to aggressively expand the scale of training, with training compute expanding at a rate of approximately 4x per year.
To put this 4x annual growth in AI training compute into perspective, it outpaces even some of the fastest technological expansions in recent history. It surpasses the peak growth rates of mobile phone adoption (2x/year, 1980-1987), solar energy capacity installation (1.5x/year, 2001-2010), and human genome sequencing (3.3x/year, 2008-2015).