Mark Pesce:

First articulated in a 1965 white paper by Ivan Sutherland, titled “The Ultimate Display,” augmented reality (AR) lay beyond our technical capacities for 50 years. That changed when smartphones began providing people with a combination of cheap sensors, powerful processors, and high-bandwidth networking—the trifecta needed for AR to generate its spatial illusions. Among today’s emerging technologies, AR stands out as particularly demanding—for computational power, for sensed data, and, I’d argue, for attention to the danger it poses.

Unlike virtual-reality (VR) gear, which creates for the user a completely synthetic experience, AR gear adds to the user’s perception of her environment. To do that effectively, AR systems need to know where in space the user is located. VR systems originally used expensive and fragile systems for tracking user movements from the outside in, often requiring external sensors to be set up in the room. But the new generation of VR accomplishes this through a set of techniques collectively known as simultaneous localization and mapping (SLAM). These systems harvest a rich stream of observational data—mostly from cameras affixed to the user’s headgear, but sometimes also from sonar, lidar, structured light, and time-of-flight sensors—using those measurements to update a continuously evolving model of the user’s spatial environment.